Energy decay rate for a quasi-linear wave equation with localized strong dissipation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Existence and Energy Decay Rates for a Kirchhoff-Type Wave Equation with Nonlinear Dissipation

The first objective of this paper is to prove the existence and uniqueness of global solutions for a Kirchhoff-type wave equation with nonlinear dissipation of the form Ku'' + M(|A (1/2) u|(2))Au + g(u') = 0 under suitable assumptions on K, A, M(·), and g(·). Next, we derive decay estimates of the energy under some growth conditions on the nonlinear dissipation g. Lastly, numerical simulations ...

متن کامل

Weighted energy decay for 3D wave equation

We obtain a dispersive long-time decay in weighted energy norms for solutions to the 1D wave equation with generic potential. The decay extends the results obtained by Murata for the 1D Schrödinger equation.

متن کامل

Rational energy decay rate for a wave equation with dynamical control

1. I N T R O D U C T I O N A N D M A I N R E S U L T In this work, we s tudy the stabilization of one-dimensional wave equations with a dynamical control Ytt -Yxz ---O, 0 ~ X ~ 1, y(0, t) = 0, yx(1, t ) + ~(t) = 0, (1.1) ~t(t) : yt(1, t) + ~?(t) = O, where ~ denotes the dynamical control and ~ is a positive constant. The dynamical control has been introduced in the finite-dimensional case (ordi...

متن کامل

Energy Decay for a Localized Dissipative Wave Equation in an Exterior Domain

We derive a fast decay rate estimate of the local energy for the wave equation with a localized dissipation of the type a(x)ut in an exterior domain Ω. The dissipative coefficient a(x) is nonnegative function only on a neighborhood of some part of the boundary ∂Ω and no growth conditions are imposed on the boundary.This extends some results of Nakao as well as the well-known most classical resu...

متن کامل

Energy Decay Rate for the Kirchhoff Type Wave Equation with Acoustic Boundary

In this paper, we study uniform exponential stabilization of the vibrations of the Kirchhoff type wave equation with acoustic boundary in a bounded domain in Rn. To stabilize the system, we incorporate separately, the passive viscous damping in the model as like Gannesh C. Gorain [1]. Energy decay rate is obtained by the exponential stability of solutions by using multiplier technique.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2011

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2011.04.064